
One Shot, Two Shot, Red Shot, Blue Shot 

Build Instructions 
 

 



2 
 

Target Console 

1) Construct the target console from ½” thick plywood and ¾” thick select trim pieces.  Use 
1/8” plywood or hardboard for the 15° angled section serving as the target area floor.  
See Figure 1 below for general dimensions and construction shape.  An opening of 33” 
wide by 19” tall works well if using 5 targets to shoot at. 

 
Figure 1 – Console Shape and Dimensions 

 
2) Next, choose 5 pictures or figures to use as targets.  Enlarge the pictures to an adequate 

size (Pictures that are roughly half of an 8.5x11 sheet work well). 
3) Cut out the target pictures and trace them onto 1/8” plywood or hardboard. 
4) Cut out the traced pictures, leaving roughly ¼” or room on all sides. 
5) Paint the cutout wooden targets, and then attach the cutout pictures on top (hodgepodge 

works well for this). 
6) Drill holes in the targets to fit LEDs, and mount LEDs in the holes. 
7) Next, cutout 5 different length wooden beams to hang the targets with (1x2” wood 

boards work well for this).   
8) Connect the targets to the shafts via hinges, and ensure they swing feely. 



3 
 

9) Attach a switch to the wooden beam of 
each target so that it is activated when 
the target swings. 

10) Next, attach these newly constructed 
target assemblies to the console by 
screwing the wooden beams in from 
the top of the console.  Be sure to 
space the targets out and position them 
in a random fashion. 

11) Place a back drop to the target area 
that matches the theme of the game.  
In our case, we used the Lorax forest 
because of the Dr. Seuss theme. 

12) Mount two 7-segment displays on the 
top of the console, and mount speakers 
on the inner part of the large bottom trip 
piece of the target area.   

13) Mount an LCD interface screen and ultrasonic proximity sensor to the front of the cosole. 
14) Lastly, run all of the wires of the 7-segment displays and targets (LED and switches) 

along the top and down the sides into the belly of the console. 
 
 
 
  
   
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Coil Gun 
 

Figure 2 – Target Switch and LED 

Figure 3 – Five targets 
assembled and  mounted with 
the Lorax forest as backdrop.  
From left to right – Thing 1 and 
Thing 2, Sneetch, Cat in the Hat, 
One Fish Two Fish Red Fish 
Blue Fish, and Horton hiding in 
the corner. 

Figure 4 – LCD screen with user 
interface and Ultrasonic 
Proximity Sensor 



4 
 

1) First, obtain a high power electric staple gun.  We used an Arrow Fastener model 
ETFX50D electric staple gun.   

2) Remove the staple reservoir on the front of the gun. 
3) Open up the staple gun by removing the screws holding it together. 
4) Disconnect the manual trigger switch that came with the gun.  It will be connected to the 

coil driver board. 
5) Locate the coil driver board, and solder lead wires across where the manual switch was 

connected. 
6) Place a new electronic switch where the original trigger switch was connected.   
7) Connect the new switch to the control side of a relay, and connect the lead wires from 

the coil driver board to the power side of the relay.  
8) Position everything so that it fits nicely and close the staple gun back up. 
9) Next, construct a revolving barrel to hold wooden dowels/darts.  (We used a 3D printing 

method using an ABS plastic material). 
10) Create a U shaped frame piece from 1/8” x ¾” metal to connect to the front of the gun to 

support the barrel, stepper motor, and infrared sensor. 
11) Obtain a long slender rod that will be used as the axis for the barrel, and position it so 

that the barrels line up correctly. 
12) Mount the stepper motor and barrel, 

and run a belt between the two pulleys. 
13) Mount the infrared sensor below the 

stepper motor. 
14) Lastly, mount 6 LEDs to the top of the 

gun.  The best way to do this is to 
mount the LEDs to a separate piece of 
plastic and then mount the piece of 
plastic to the gun.  Be sure to run a 
common power to the LEDs and keep 
the negative wires of the LEDs 
independently controlled. 

15) Make darts to fit inside of the revolving 
barrel.  Wooden dowels work well for 
this. 

16) Lastly, run all of the wires down the 
side of the gun and secure them using 
tape or other means.  Run the wires, 
along with the power cord for the coil 
that came with the staple gun, through 
a shielding hose to the console, 
leaving roughly 10 feet of length between the gun and console. 

Figure 5 – Front View of Gun 



5 
 

  

Figure 6 – Coil Gun Interior Break-down 

 

   

Figure 7 – Coil Gun Exterior Break-down 



6 
 

Electronics 
*for any questions refer to Functional Diagram and Wiring Schematic for assistance  
(Figures 9 & 10) 

1) Connect pin 8 of the MEGA to the base of an NPN transistor.  Also connect that same 
pin of the NPN transistor through a 1kohm resistor to ground.  Connect the collector of 
the transistor to power, and connect the emitter of the transmitter to the power of the 
speakers.  Connect the ground of the speakers to ground, and use a flyback diode. 

2) Connect the communication lines of the LCD screen shield to ports SDA20 and SCL21 
of the MEGA.  Connect power and ground to the shield as well. 

3) Connect pin 24 of the MEGA to pin 1 of both PICs using a 1 kohm pull down resistor. 
4) Connect pin 27 of the MEGA to pin 4 of the UNO. 
5) Connect pin 31 of the MEGA to pin 2 of the ONE’s digit PIC using a 1 kohm pull down 

resistor. 
6) Connect pin 36 of the MEGA to power.  
7) Connect pin 40 of the MEGA to RESET of the UNO. 
8) Connect pins 44 through 48 of the MEGA to the target switches using 1 kohm pull down 

resistors. 
9) Connect pins 49 through 53 of the MEGA to the ground side of the target LEDs, using 

330 ohm resistors in series. 
10) Connect power and ground to the infrared proximity sensor, and connect the sensor wire 

to pin A0 of the UNO. 
11) Connect the barrel reset switch to pin A4 of the UNO using a 1 kohm pull down resistor. 
12) Connect pin 2 of the UNO to STEP of the stepper motor driver, and pin 3 of the UNO to 

DIR of the stepper motor driver. 
13) Connect pin 5 of the UNO to the control side of the solenoid relay. 
14) Connect pin 6 of the UNO to the trigger switch using a 1 kohm pull down resistor. 
15) Connect pins 7 through 12 of the UNO to the ground side of the gun LEDs using 330 

ohm resistors in series. 
16) Connect power and ground to the ultrasound proximity sensor, and connect the sensor 

wire to pin 13 of the UNO. 
17) Connect pin 4 of both PICs to power through a 1 kohm resistor. 
18) Connect pin 5 of both PICs directly to ground. 
19) Connect pins 6 through 12 of both PICs to their corresponding 7-Segment Display Leg 

through 330 ohm resistors using the following table: 
 
 

PIC PIN Number 7-Segment Display 
Leg 

6 E 
7 D 
8 G 
9 C 

10 B 
11 A 

Table 1 – Seven Segment Display Pin Numbers vs 
Leg 



7 
 

12 F 
 

20) Connect pin 13 of the ONEs digit PIC to pin 2 of the TENs digit PIC. 
21) Connect pin 14 of both PICs directly to power, and connect a 0.1microfarad capacitor in 

parallel. 
22) A separate 12V power source should connect to the common anode of both 7-segment 

displays. 
23) Attach that same 12V power source to the stepper motor driver circuit, and be sure to 

attach ground of the 12V power source to the common ground. 
24) Attach the ground of either the same high output 12V source or an additional high output 

source to the power side of the relay (the relay connected to pin 5 of the UNO).  Ground 
both the power and control side of the relay. 

25) Attach the power to a transistor that needs to be connected across the lead wires that 
were installed across where the manual trigger switch used to be connected to the 
staple gun driver board. 

 

 

Figure 9 – Functional Diagram 

Figure 8 – Seven Segment Display Legs 



8 
 

                      

Figure 10 – W
iring Schem

atic 



Arduino UNO Annotated Code 
 
#include "Arduino.h" 
 
int Pin2 = 2; // motor step 
int Pin3 = 3; // motor direction 
int Pin4 = 4; // end game signal 
int Pin5 = 5; // coil activation 
int Pin6 = 6; // trigger signal 
int Pin7 = 7; // gun led #1 
int Pin8 = 8; // gun led #2 
int Pin9 = 9; // gun led #3 
int Pin10 = 10; //gun led #4 
int Pin11 = 11; //gun led #5 
int Pin12 = 12; //gun led #6 
int Pin13 = 13; //ultrasound proximity sensor 
int PinA0 = A0; //infared proximity sensor 
int PinA4 = A4; //barrell reset switch 
int i=0;  // number of shots variable 
int k=0;  // motor motion variable 
int zach=0;  //prevent trigger during motor motion variable 
int jake=0; // tied into end game signal 
int duration; //duration for ultrasound sensor 
int cm; //distance for ultrasound sensor 
int ValueA0=LOW; //intitialize infared value low 
int Value3=HIGH; //intitialize motor direction CCW 
int Value6=LOW; //initialize trigger signal low 
int ValueA4=LOW; //initial barrel reset switch low 
 
void setup() 
{ 
  pinMode(Pin2, OUTPUT); 
  pinMode(Pin3, INPUT); 
  pinMode(Pin4, OUTPUT); 
  pinMode(Pin5, OUTPUT); 
  pinMode(Pin6, INPUT); 
  pinMode(Pin7, OUTPUT); 
  pinMode(Pin8, OUTPUT); 
  pinMode(Pin9, OUTPUT); 
  pinMode(Pin10, OUTPUT); 
  pinMode(Pin11, OUTPUT); 
  pinMode(Pin12, OUTPUT); 
  pinMode(PinA0, INPUT); 
  pinMode(PinA4, INPUT); 
} 
 



2 
 

void Reset()  
{ 
  ValueA4=digitalRead(PinA4); // Barrel Reset 
  if (ValueA4 == LOW) 
  { 
        digitalWrite(Pin3, HIGH);  //CCW 
        digitalWrite(Pin2, HIGH);  // 1 step 
        delayMicroseconds(500);           
        digitalWrite(Pin2, LOW);  
        delayMicroseconds(500); 
  } 
  if (ValueA4 == HIGH) //Barrel Reset complete 
  { 
    i++; 
    zach++; 
  } 
 
//Turn on all Gun LEDs 
digitalWrite (Pin7, LOW); 
digitalWrite (Pin8, LOW); 
digitalWrite (Pin9, LOW); 
digitalWrite (Pin10, LOW); 
digitalWrite (Pin11, LOW); 
digitalWrite (Pin12, LOW); 
} 
 
void MotorMotion() 
{ 
        digitalWrite(Pin3, LOW);  // Large Gear = 34,  Small Gear = 15 
        digitalWrite(Pin2, HIGH);   // 1 step 
        delayMicroseconds(500);           
        digitalWrite(Pin2, LOW);  
        delayMicroseconds(500); 
} 
 
void Always()  
{ 
 
ValueA0=analogRead(PinA0);  //Infared Proximity Sensor 
 if (ValueA0 <= 300) //Infared Sensor prevents shooting at close range 
 { 
   if (cm > 150)  //UltraSound Sensor prevents shooting at close range 
   { 
    ValueA4=digitalRead(PinA4); 
   if (zach >= 1) //Prevent trigger during barrel reset 
   { 



3 
 

     if (k==0) //Prevent trigger during motor motion 
     { 
  Value6=digitalRead(Pin6);  //Activate Coil 
  if (Value6 == HIGH) 
  { 
    digitalWrite(Pin5, HIGH); 
    delay(25); 
    digitalWrite(Pin5, LOW); 
    delay(250); 
    i++; 
 
  if (i==2) //Remove one LED from Gun 
  { 
    digitalWrite (Pin7, HIGH); 
    digitalWrite (Pin8, LOW); 
    digitalWrite (Pin9, LOW); 
    digitalWrite (Pin10, LOW); 
    digitalWrite (Pin11, LOW); 
    digitalWrite (Pin12, LOW); 
  } 
  if (i==3) //Remove one more LED from Gun 
  { 
    digitalWrite (Pin7, HIGH); 
    digitalWrite (Pin8, HIGH); 
    digitalWrite (Pin9, LOW); 
    digitalWrite (Pin10, LOW); 
    digitalWrite (Pin11, LOW); 
    digitalWrite (Pin12, LOW); 
  } 
  if (i==4) //Remove one more LED from Gun 
  { 
    digitalWrite (Pin7, HIGH); 
    digitalWrite (Pin8, HIGH); 
    digitalWrite (Pin9, HIGH); 
    digitalWrite (Pin10, LOW); 
    digitalWrite (Pin11, LOW); 
    digitalWrite (Pin12, LOW); 
  } 
  if (i==5) //Remove one more LED from Gun 
  { 
    digitalWrite (Pin7, HIGH); 
    digitalWrite (Pin8, HIGH); 
    digitalWrite (Pin9, HIGH); 
    digitalWrite (Pin10, HIGH); 
    digitalWrite (Pin11, LOW); 
    digitalWrite (Pin12, LOW); 



4 
 

  } 
  if (i==6) //Remove one more LED from Gun 
  { 
    digitalWrite (Pin7, HIGH); 
    digitalWrite (Pin8, HIGH); 
    digitalWrite (Pin9, HIGH); 
    digitalWrite (Pin10, HIGH); 
    digitalWrite (Pin11, HIGH); 
    digitalWrite (Pin12, LOW); 
  } 
  if (i==7) //Remove one more LED from Gun 
  { 
    digitalWrite (Pin7, HIGH); 
    digitalWrite (Pin8, HIGH); 
    digitalWrite (Pin9, HIGH); 
    digitalWrite (Pin10, HIGH); 
    digitalWrite (Pin11, HIGH); 
    digitalWrite (Pin12, HIGH); 
  } 
    delay(100); 
    k++; 
 
 
  
  }    //End Activate Coil 
     } //End prevent trigger during motor motion 
   }  //End prevent trigger during barrel reset 
   } //End Ultrasound Prox Sensor 
} // End Proximity Sensor   
} //End Always Function 
 
void loop() 
{ 
  if (i==0)  //initially set to 0 
    { 
    Reset (); 
    } 
  if (i<=6) //Active until 6 shots taken 
    { 
    Always(); 
    if (zach>0)   
    { 
    if (k==0) //Ultrasound sensor 
    { 
 
//UltraSound Sensor reading 



5 
 

  pinMode(Pin13, OUTPUT);  
  digitalWrite(Pin13, LOW); 
  delayMicroseconds(2); 
  digitalWrite(Pin13, HIGH); 
  delayMicroseconds(5); 
  digitalWrite(Pin13, LOW); 
 
  pinMode(Pin13, INPUT); 
  duration = pulseIn(Pin13, HIGH); //UltraSound Time 
 
  cm = duration/29/2;  //Convert UltraSound Time to Distance 
  
  delay(100);  
   
    } 
    } 
      if (k>0) 
      { 
        if(k<605) // 60 deg of motion 
        { 
        MotorMotion(); 
        k++; 
        } 
      } 
     if (k==605)  // once 60 deg is complete 
     { 
     k=0; //reset k to 0 
     } 
    } 
   else 
   { 
     if (jake == 0)  //only allow end game signal for 4 seconds 
     { 
     digitalWrite (Pin4, HIGH); // End Game Signal 
     delay(4000);  //4 second delay 
     digitalWrite (Pin4, LOW);  
     jake++; 
     } 
   } 
} 
 



PicBasic ONES DIGIT Annotated Code 
 
DEFINE OSC 8 
OSCCON.4=1 
OSCCON.5=1 
OSCCON.6=1 
 
ANSEL=0 
 
pins var byte[16] 
I var byte 
 
TRISA=%00011100 
TRISB=%00000000 
 
pins[ 0] = %10000010 
pins[ 1] = %10110111 
pins[ 2] = %11000001 
pins[ 3] = %10010001 
pins[ 4] = %10110100 
pins[ 5] = %10011000 
pins[ 6] = %10001000 
pins[ 7] = %10110011 
pins[ 8] = %10000000 
pins[ 9] = %10110000 
 
I=0 
Gosub Updatepins 
 
myloop: 
 
If(PORTA.2==0)Then 'reset 
I=0 
Gosub Updatepins 
Pause 100 
Endif 
 
If(PORTA.3==1)Then 'increment 
If(I==9)Then 
I=0 
Low PORTB.7 'send increment to tens digit 
Pause 99 
Else 
I=I+1 



Endif 
 
Gosub Updatepins 
Pause 100 
Endif 
 
Goto myloop 
 
Updatepins: 
PORTB=pins[I] 
Return 
 
End 
 



 



PicBasic TENS DIGIT Annotated Code 
 
DEFINE OSC 8 
OSCCON.4=1 
OSCCON.5=1 
OSCCON.6=1 
 
ANSEL=0 
 
pins var byte[16] 
I var byte 
 
TRISA=%00011100 
TRISB=%00000000 
 
pins[ 0] = %10000010 
pins[ 1] = %10110111 
pins[ 2] = %11000001 
pins[ 3] = %10010001 
pins[ 4] = %10110100 
pins[ 5] = %10011000 
pins[ 6] = %10001000 
pins[ 7] = %10110011 
pins[ 8] = %10000000 
pins[ 9] = %10110000 
 
I=0 
Gosub Updatepins 
 
myloop: 
 
If(PORTA.2==0)Then 'reset 
I=0 
Gosub Updatepins 
Pause 100 
Endif 
 
If(PORTA.3==0)Then 'increment 
If(I==9)Then 
I=0 
Else 
I=I+1 
Endif 
 



Gosub Updatepins 
Pause 100 
Endif 
 
Goto myloop 
 
Updatepins: 
PORTB=pins[I] 
Return 
 
End 
 



Arduino MEGA Annotated Code 
 
// include the library code: 
#include <Wire.h> 
#include <Adafruit_MCP23017.h> 
#include <Adafruit_RGBLCDShield.h> 
#include "pitches.h" 
Adafruit_RGBLCDShield lcd = Adafruit_RGBLCDShield(); 
// These #defines make it easy to set the backlight color 
#define RED 0x1 
#define YELLOW 0x3 
#define GREEN 0x2 
#define TEAL 0x6 
#define BLUE 0x4 
#define VIOLET 0x5 
#define WHITE 0x7 
int selectval = 0; //variable for LCD screen selection options 
int UNORESETpin = 40; //soft reset for UNO at game start 
int ENDpin = 27;  //end of game signal 
int valENDpin; 
int melody1[] = { 
  NOTE_C4, NOTE_G3,NOTE_G3, NOTE_A3, NOTE_G3,0, NOTE_B3, NOTE_C4}; // notes 
in the start up melody 
int melody2[] = { 
  NOTE_C4, NOTE_D4, NOTE_F4};// notes in the hit target melody 
int noteDurations1[] = { 
  4, 8, 8, 4,4,4,4,4 };// note durations for melody 1: 4 = quarter note, 8 = eighth note, etc.: 
int noteDurations2[] = { 
  8, 8, 8}; // note durations for melody 2 
int screenopen = 0; 
int PICRESETpin = 22; //reset pin for PIC at beginning of game 
int Pin31 = 31; 
int Pin36 = 36; //on/off switch pin 
int Pin43 = 43; 
int Pin44 = 44;//target 1 
int Pin45 = 45;//target 2 
int Pin46 = 46;//target 3 
int Pin47 = 47;//target 4 
int Pin48 = 48;//target 5 
int Pin49 = 49;//LED1 
int Pin50 = 50;//LED2 
int Pin51 = 51;//LED3 
int Pin52 = 52;//LED4 
int Pin53 = 53;//LED5 
int j=0; 
int repeat; 



///////////////////////////VOID SETUP///////////////////////////// 
void setup() { 
  // Debugging output 
  Serial.begin(9600); 
  // set up the LCD's number of columns and rows:  
  lcd.begin(16, 2); 
  //declare pin modes 
  pinMode(ENDpin,INPUT); 
  pinMode(UNORESETpin,OUTPUT); 
  pinMode(PICRESETpin, OUTPUT); 
  pinMode(Pin31, OUTPUT); 
  pinMode(Pin36, INPUT); 
  pinMode(Pin44, INPUT);  //target1 
  pinMode(Pin45, INPUT);  //target2 
  pinMode(Pin46, INPUT);  //target3 
  pinMode(Pin47, INPUT);  //target4 
  pinMode(Pin48, INPUT);  //target5 
  pinMode(Pin49, OUTPUT);  //led1 
  pinMode(Pin50, OUTPUT);  //led2 
  pinMode(Pin51, OUTPUT);  //led3 
  pinMode(Pin52, OUTPUT);  //led4 
  pinMode(Pin53, OUTPUT);  //led5 
   
  //set up starting values 
  digitalWrite(UNORESETpin,HIGH); 
  digitalWrite(PICRESETpin, LOW); 
  digitalWrite(Pin49, HIGH);  //writing LEDs to ground powered 
  digitalWrite(Pin50, HIGH);  //writing LEDs to ground powered 
  digitalWrite(Pin51, HIGH);  //writing LEDs to ground powered 
  digitalWrite(Pin52, HIGH);  //writing LEDs to ground powered 
  digitalWrite(Pin53, HIGH);  //writing LEDs to ground powered 
   
  // iterate over the notes of the melody: 
   for (int thisNote = 0; thisNote < 8; thisNote++)  
  { 
    // to calculate the note duration, take one second  
    // divided by the note type. 
    //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc. 
    int noteDuration = 1000/noteDurations1[thisNote]; 
    tone(8, melody1[thisNote],noteDuration); 
 
    // to distinguish the notes, set a minimum time between them. 
    // the note's duration + 30% seems to work well: 
    int pauseBetweenNotes = noteDuration * 1.30; 
    delay(pauseBetweenNotes); 
    // stop the tone playing: 



    noTone(8); 
  } 
  // Print a start up message to the LCD. 
  lcd.setCursor(0,0); 
    lcd.print("DO YOU WANT"); 
  lcd.setCursor(0,1); 
    lcd.print("TO PLAY?");   
  lcd.setBacklight(WHITE); 
} 
uint8_t i=0; 
/////////////////////////////VOID LOOP//////////////////////////// 
void loop()  
{ 
  while (screenopen==0)              //while the screen variable is 0, it will run the screen program. 
  { 
  screen();                          //run the screen program 
  } 
  delay(250);                        //delay 250 milliseconds 
  int onoff = digitalRead(Pin36);    //initialize the On/off pin variable 
  if (onoff == HIGH)                 //if the console is on, it will go through the program 
   { 
     int theend = digitalRead(ENDpin); //set up end of game signal variable 
     if (theend == LOW)            //if there is no end of game signal, it will go through the program 
     { 
     //if (tessa == 0) 
      //{ 
      //PLAY STARTUP MUSIC 
      //tessa++; 
      //} 
     delay(5000);                 //delay 5 seconds 
     Always();                    //run the Always program 
     screenopen = 0;              //set screen variable to 0 
     } 
   } 
}   
/////////////////////////SCREEN PROGRAM/////////////////////////// 
void screen() 
{   
  uint8_t buttons = lcd.readButtons();         // setting up the read buttons function 
  int theend = digitalRead(ENDpin);           // setting up the end signal pin 
  // Print a message to the LCD. 
  if (selectval==3){                          // selectval is the selection variable for the LCD screen. Its 
value lets the program know which message to display.     
  lcd.setCursor(0,0); 
    lcd.print("DO YOU WANT      "); 
  lcd.setCursor(0,1); 



    lcd.print("TO PLAY?");   
  lcd.setBacklight(WHITE); 
  } 
 if (buttons) {                              // starting the IF statement for the buttons on the LCD screen 
    lcd.clear(); 
    lcd.setCursor(0,0); 
     
      if (buttons & BUTTON_UP) {     // pressing the "UP" button will display "YES!! I LIKE 
FUN!" and change background color. 
         lcd.print("YES!!"); 
         lcd.setCursor(0,1); 
         lcd.print("I LIKE FUN!"); 
         lcd.setBacklight(TEAL); 
         selectval=1; 
      }  
       if (selectval==1 & buttons & BUTTON_SELECT) {  //if the UP button has been hit, and the 
select button is pressed, it will display "GOOD CHOICE" and send reset signals to  
         lcd.print("GOOD CHOICE!");                   //the PICs and the UNO. It will remain on this 
screen until the game has ended. 
         digitalWrite(STARTpin, HIGH);                 
         digitalWrite(UNORESETpin,LOW); 
         digitalWrite(PICRESETpin,HIGH); 
         delay(50); 
         digitalWrite(UNORESETpin,HIGH); 
         digitalWrite(PICRESETpin,LOW); 
         screenopen=1; 
            } 
    } 
    if (buttons & BUTTON_DOWN) {                    //If the "DOWN" button is pressed, the screen 
will display "NO I'M BORING". 
      lcd.setCursor(0,0); 
      lcd.print("NO"); 
      lcd.setCursor(0,1); 
      lcd.print("I'M BORING :("); 
      lcd.setBacklight(GREEN); 
      selectval=2; 
    } 
         if (selectval==2 & buttons & BUTTON_SELECT) {  //If the down button has been 
selected and the select button is pressed, the screen will display "BORING" and  
           lcd.print("BORING!");                        //take the user back to the start screen. 
           lcd.setBacklight(VIOLET); 
           delay(2000); 
           selectval = 3; 
            
          } 



    if (buttons & BUTTON_LEFT) {                        //If the left or right buttons are pressed, it will 
display "CLICK UP OR DOWN", letting the user know they have hit the wrong buttons. 
      lcd.print("CLICK UP OR DOWN"); 
      lcd.setBacklight(GREEN); 
      selectval=0; 
    } 
    if (buttons & BUTTON_RIGHT) { 
      lcd.print("CLICK UP OR DOWN"); 
      lcd.setBacklight(TEAL); 
      selectval=0; 
    } 
      if (selectval==0 & buttons & BUTTON_SELECT) {    //If the left/right button has been 
slected and the select button is pressed, it will display "WRONG BUTTON!" and take the user 
back 
         lcd.print("WRONG BUTTON!");                   //to the start screen.  
         lcd.setBacklight(VIOLET); 
         delay(3000); 
         selectval=3; 
  
            } 
     
    if(theend == HIGH & selectval==1) {               //If the MEGA receives a high signal from the 
UNO and the game has been started, the screen will display "THANKS 4 PLAYIN'" 
       lcd.setCursor(0,0);                            //and take the user back to the start screen. A new game 
can now be started. 
       lcd.print("THANKS 4 PlAYIN'"); 
       delay(6000); 
       selectval = 3; 
     }   
}  
///////////////////////////score program//////////////////////////// 
void Score() 
{ 
  digitalWrite (Pin31, HIGH);    //sends a HIGH signal to the PICs to increase the score on the 7-
segment displays.  
  delay (100); 
  digitalWrite (Pin31, LOW);     //writes the pin low again after score signal has been sent. 
    //SCORE MUSIC 
} // END OF VOID SCORE 
 
///////////////////////////////ALWAYS/////////////////////////////// 
void Always() 
{ 
  repeat = digitalRead(ENDpin); //The repeat variable allows for a new game to be played after 
one has ended. It is dependent on the signal from the UNO in the ENDpin. 



  while(repeat==LOW) //This loop will run while there is no high signal from the UNO, meaning 
the game is not over. 
  //for (int x = 0; x <= 5; x++) 
  { 
    int randomselect=random(1,7);  //sets up the random LED program to select a number between 
1 and 6.     
    int theend = digitalRead(ENDpin); //setting up the end variable for the end of game signal 
from the UNO 
    if (theend == HIGH)  
    { 
      loop(); 
    } 
       if (randomselect==1) //random program selects a "1", which lights up LED on Target 1. 
    {  
      digitalWrite (Pin49, LOW); //send LED1 low to turn on LED. 
      for (int k=0; k<=3000; k++) { 
        boolean z = digitalRead(Pin44); //setting up the switch for target 1 
        delay(1); 
        if (z== HIGH) //If target 1 is hit, switch 1 will go high. 
        { 
          Score(); //target 1 will send 5 pulses to PIC, giving the user 5 points for hitting this target. 
          Score(); 
          Score(); 
          Score(); 
          Score(); 
          tessa(); //melody will play telling the user a target was hit 
          digitalWrite(Pin49, HIGH); //turn off the LED if the target is hit 
          break; //breaks prevent someone from getting extra points from the target swinging and 
hitting the switch again. 
          break; 
        } 
      } 
      digitalWrite(Pin49, HIGH); //turn off the LED even if the target was not hit. 
    } 
  if (randomselect==6) //If random program selects "6", lights up LED on target 2. 
    { 
      digitalWrite (Pin50, LOW); //turn on target 2 LED 
      for (int k=0; k<=3000; k++) { 
        boolean z = digitalRead(Pin45); //setting up switch for target 2 
        delay(1); 
        if (z== HIGH) //if target 2 is hit, switch 2 will go high. 
        { 
          Score(); //target 2 will send 2 pulses to PIC, giving the user 2 points. 
          Score(); 
          tessa();//melody will play telling the user a target was hit 
          digitalWrite(Pin50, HIGH); //turn off LED if the target is hit 



          break; //breaks prevent user from getting extra points from the target swinging and hitting 
the switch again. 
          break; 
        } 
      }  
      digitalWrite(Pin50, HIGH); //turn off LED even if target was not hit 
    } 
 
    if (randomselect==3) //If random program selects "3", lights up LED on target 3. 
    { 
      digitalWrite (Pin51, LOW); //turns on target 3 LED 
      for (int k=0; k<=3000; k++) { 
        boolean z = digitalRead(Pin46); //sets up switch for target 3 
        delay(1); 
        if (z== HIGH) //if target 3 is hit, switch 3 will go high 
        { 
          Score(); //target 3 will send one pulse to PIC, giving the user 1 point 
          tessa(); //melody will play telling the user a target was hit 
          digitalWrite(Pin51, HIGH); //turn off LED if the target it hit 
          break; 
          break; //breaks prevent user from getting extra points from the target swinging and hitting 
the switch again. 
        } 
      } 
      digitalWrite(Pin51, HIGH); //turn off LED even if target was not hit 
    } 
   
    if (randomselect==4) //If random program selects "4", activates target 4 
    { 
      digitalWrite (Pin52, LOW); //turn on LED on target 4 
      for (int k=0; k<=3000; k++) { 
        boolean z = digitalRead(Pin47); //set up switch on target 4 
        delay(1); 
        if ( z== HIGH) //if target 4 is hit, switch 4 will go high 
        { 
          Score(); //target 4 will send 4 pulses to PIC, giving user 4 points. 
          Score(); 
          Score(); 
          Score(); 
          tessa(); //melody will play telling the user a target was hit 
          digitalWrite(Pin52, HIGH); //if target was hit, turn off LED 
          break; 
          break; //breaks prevent user from getting extra points from the target swinging and hitting 
the switch again. 
        } 
      }  



      digitalWrite(Pin52, HIGH); //turn off LED even if target was not hit. 
    }  
   
    if (randomselect==5) //If random progam selects "5", activate target 5. 
    { 
      digitalWrite (Pin53, LOW); //turns on LED on target 5 
      for (int k=0; k<=3000; k++) { 
        boolean z = digitalRead(Pin48); //set up target 5 switch 
        delay(1); 
        if ( z== HIGH) //if target 5 is hit, switch will go high 
          { 
          Score(); //target 5 will send 3 pulses to PIC, giving user 3 points. 
          Score(); 
          Score(); 
          tessa(); //melody will play telling the user a target was hit 
          digitalWrite(Pin53, HIGH); //if taget was hit, turn off LED. 
          break; //breaks prevent user from getting extra points from the target swinging and hitting 
the switch again. 
          break; 
          } 
        } 
        digitalWrite(Pin53, HIGH); //turn off LED even if target was not hit 
    }  
    repeat = digitalRead(ENDpin); //checking for end of game signal 
  } 
}// END OF VOID ALWAYS 
///////////////////SOUND///////////////////////////////// 
void tessa()  
{ 
  //pin44 
    for (int thisNote = 0; thisNote < 8; thisNote++)  
    { 
    int noteDuration = 1000/noteDurations2[thisNote]; 
    tone(8, melody2[thisNote],noteDuration); 
    int pauseBetweenNotes = noteDuration * 1.30; 
    delay(pauseBetweenNotes); 
    noTone(8); // stop the tone playing 
        } 
 } 
 


	build instructions
	1
	2
	3
	4

